Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-16, show relevant mathematical reasoning and/or calculations

Total marks - 100
Section I Pages 2-6

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section
Section II Pages 7-18

90 marks

- Attempt Questions 11-16
- Allow about 2 hours and 45 minutes for this section

Section I

10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1 Which conic has eccentricity $\frac{\sqrt{13}}{3}$?
(A) $\frac{x^{2}}{3}+\frac{y^{2}}{2}=1$
(B) $\frac{x^{2}}{3^{2}}+\frac{y^{2}}{2^{2}}=1$
(C) $\frac{x^{2}}{3}-\frac{y^{2}}{2}=1$
(D) $\frac{x^{2}}{3^{2}}-\frac{y^{2}}{2^{2}}=1$

2 What value of z satisfies $z^{2}=7-24 i$?
(A) $4-3 i$
(B) $-4-3 i$
(C) $3-4 i$
(D) $-3-4 i$

3 Which graph best represents the curve $y=(x-1)^{2}(x+3)^{5}$?

4 The polynomial $x^{3}+x^{2}-5 x+3$ has a double root at $x=\alpha$.
What is the value of α ?
(A) $-\frac{5}{3}$
(B) -1
(C) 1
(D) $\frac{5}{3}$

5 Given that $z=1-i$, which expression is equal to z^{3} ?
(A) $\sqrt{2}\left(\cos \left(\frac{-3 \pi}{4}\right)+i \sin \left(\frac{-3 \pi}{4}\right)\right)$
(B) $2 \sqrt{2}\left(\cos \left(\frac{-3 \pi}{4}\right)+i \sin \left(\frac{-3 \pi}{4}\right)\right)$
(C) $\sqrt{2}\left(\cos \left(\frac{3 \pi}{4}\right)+i \sin \left(\frac{3 \pi}{4}\right)\right)$
(D) $2 \sqrt{2}\left(\cos \left(\frac{3 \pi}{4}\right)+i \sin \left(\frac{3 \pi}{4}\right)\right)$
$6 \quad$ Which expression is equal to $\int x^{2} \sin x d x$?
(A) $-x^{2} \cos x-\int 2 x \cos x d x$
(B) $-2 x \cos x+\int x^{2} \cos x d x$
(C) $-x^{2} \cos x+\int 2 x \cos x d x$
(D) $-2 x \cos x-\int x^{2} \cos x d x$

7 The numbers $1,2, \ldots n$, for $n \geq 4$, are randomly arranged in a row.
What is the probability that the number 1 is somewhere to the left of the number 2 ?
(A) $\frac{1}{2}$
(B) $\frac{1}{n}$
(C) $\frac{1}{2(n-2)!}$
(D) $\frac{1}{2(n-1)!}$

8 The graph of the function $y=f(x)$ is shown.

A second graph is obtained from the function $y=f(x)$.

Which equation best represents the second graph?
(A) $y^{2}=|f(x)|$
(B) $y^{2}=f(x)$
(C) $y=\sqrt{f(x)}$
(D) $y=f(\sqrt{x})$

9 The complex number z satisfies $|z-1|=1$.
What is the greatest distance that z can be from the point i on the Argand diagram?
(A) 1
(B) $\sqrt{5}$
(C) $2 \sqrt{2}$
(D) $\sqrt{2}+1$

10 Consider the expansion of

$$
\left(1+x+x^{2}+\cdots+x^{n}\right)\left(1+2 x+3 x^{2}+\cdots+(n+1) x^{n}\right)
$$

What is the coefficient of x^{n} when $n=100$?
(A) 4950
(B) 5050
(C) 5151
(D) 5253

Section II

90 marks

Attempt Questions 11-16
Allow about 2 hours and 45 minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Express $\frac{4+3 i}{2-i}$ in the form $x+i y$, where x and y are real.
(b) Consider the complex numbers $z=-\sqrt{3}+i$ and $w=3\left(\cos \frac{\pi}{7}+i \sin \frac{\pi}{7}\right)$.
(i) Evaluate $|z|$.
(ii) Evaluate $\arg (z)$.

1
(iii) Find the argument of $\frac{z}{w}$.
(c) Find A, B and C such that $\frac{1}{x\left(x^{2}+2\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+2}$.
(d) Sketch $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ indicating the coordinates of the foci.
(e) Find the value of $\frac{d y}{d x}$ at the point $(2,-1)$ on the curve $x+x^{2} y^{3}=-2$.
(f) (i) Show that $\cot \theta+\operatorname{cosec} \theta=\cot \left(\frac{\theta}{2}\right)$.
(ii) Hence, or otherwise, find $\int(\cot \theta+\operatorname{cosec} \theta) d \theta$.

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) The complex number z is such that $|z|=2$ and $\arg (z)=\frac{\pi}{4}$.

Plot each of the following complex numbers on the same half-page Argand diagram.
(i) z
(ii) $u=z^{2}$
(iii) $v=z^{2}-\bar{z}$
(b) The polynomial $P(x)=x^{4}-4 x^{3}+11 x^{2}-14 x+10$ has roots $a+i b$ and $a+2 i b$ where a and b are real and $b \neq 0$.
(i) By evaluating a and b, find all the roots of $P(x)$.
(ii) Hence, or otherwise, find one quadratic polynomial with real coefficients that is a factor of $P(x)$.
(c) (i) By writing $\frac{(x-2)(x-5)}{x-1}$ in the form $m x+b+\frac{a}{x-1}$, find the equation of the oblique asymptote of $y=\frac{(x-2)(x-5)}{x-1}$.
(ii) Hence sketch the graph $y=\frac{(x-2)(x-5)}{x-1}$, clearly indicating all intercepts and asymptotes.

Question 12 continues on page 9

Question 12 (continued)
(d) The diagram shows the graph $y=\sqrt{x+1}$ for $0 \leq x \leq 3$. The shaded region is rotated about the line $x=3$ to form a solid.

Use the method of cylindrical shells to find the volume of the solid.

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) The hyperbolas $H_{1}: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and $H_{2}: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$ are shown in the diagram.

Let $P(a \sec \theta, b \tan \theta)$ lie on H_{1} as shown on the diagram.
Let Q be the point $(a \tan \theta, b \sec \theta)$.

(i) Verify that the coordinates of $Q(a \tan \theta, b \sec \theta)$ satisfy the equation for H_{2}.
(ii) Show that the equation of the line $P Q$ is $b x+a y=a b(\tan \theta+\sec \theta)$.
(iii) Prove that the area of $\triangle O P Q$ is independent of θ.

Question 13 (continued)
(b) Two quarter cylinders, each of radius a, intersect at right angles to form the shaded solid.

A horizontal slice $A B C D$ of the solid is taken at height h from the base. You may assume that $A B C D$ is a square, and is parallel to the base.

(i) Show that $A B=\sqrt{a^{2}-h^{2}}$.
(ii) Find the volume of the solid.
(c) A small spherical balloon is released and rises into the air. At time t seconds, it has radius $r \mathrm{~cm}$, surface area $S=4 \pi r^{2}$ and volume $V=\frac{4}{3} \pi r^{3}$.

As the balloon rises it expands, causing its surface area to increase at a rate of $\left(\frac{4 \pi}{3}\right)^{\frac{1}{3}} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$. As the balloon expands it maintains a spherical shape.
(i) By considering the surface area, show that $\frac{d r}{d t}=\frac{1}{8 \pi r}\left(\frac{4}{3} \pi\right)^{\frac{1}{3}}$.
(ii) Show that $\frac{d V}{d t}=\frac{1}{2} V^{\frac{1}{3}}$.
(iii) When the balloon is released its volume is $8000 \mathrm{~cm}^{3}$. When the volume of the balloon reaches $64000 \mathrm{~cm}^{3}$ it will burst. How long after it is released will the balloon burst?

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) (i) Differentiate $\sin ^{n-1} \theta \cos \theta$, expressing the result in terms of $\sin \theta$ only.
(ii) Hence, or otherwise, deduce that $\int_{0}^{\frac{\pi}{2}} \sin ^{n} \theta d \theta=\frac{(n-1)}{n} \int_{0}^{\frac{\pi}{2}} \sin ^{n-2} \theta d \theta$, for $n>1$.
(iii) Find $\int_{0}^{\frac{\pi}{2}} \sin ^{4} \theta d \theta$.
(b) The cubic equation $x^{3}-p x+q=0$ has roots α, β and γ.

It is given that $\alpha^{2}+\beta^{2}+\gamma^{2}=16$ and $\alpha^{3}+\beta^{3}+\gamma^{3}=-9$.
(i) Show that $p=8$.
(ii) Find the value of q.
(iii) Find the value of $\alpha^{4}+\beta^{4}+\gamma^{4}$.

Question 14 continues on page 14

(c) A car of mass m is driven at speed v around a circular track of radius r. The track is banked at a constant angle θ to the horizontal, where $0<\theta<\frac{\pi}{2}$. At the speed v there is a tendency for the car to slide up the track. This is opposed by a frictional force μN, where N is the normal reaction between the car and the track, and $\mu>0$. The acceleration due to gravity is g.

(i) Show that $v^{2}=r g\left(\frac{\tan \theta+\mu}{1-\mu \tan \theta}\right)$.
(ii) At the particular speed V, where $V^{2}=r g$, there is still a tendency for the car to slide up the track.

Using the result from part (i), or otherwise, show that $\mu<1$.

End of Question 14

Question 15 (15 marks) Use a SEPARATE writing booklet.
(a) A particle A of unit mass travels horizontally through a viscous medium. When $t=0$, the particle is at point O with initial speed u. The resistance on particle A due to the medium is $k v^{2}$, where v is the velocity of the particle at time t and k is a positive constant.

When $t=0$, a second particle B of equal mass is projected vertically upwards from O with the same initial speed u through the same medium. It experiences both a gravitational force and a resistance due to the medium. The resistance on particle B is $k w^{2}$, where w is the velocity of the particle B at time t. The acceleration due to gravity is g.
(i) Show that the velocity v of particle A is given by $\frac{1}{v}=k t+\frac{1}{u}$.

$$
t=\frac{1}{\sqrt{g k}}\left(\tan ^{-1}\left(u \sqrt{\frac{k}{g}}\right)-\tan ^{-1}\left(w \sqrt{\frac{k}{g}}\right)\right)
$$

(iii) Show that the velocity V of particle A when particle B is at rest is given by

$$
\frac{1}{V}=\frac{1}{u}+\sqrt{\frac{k}{g}} \tan ^{-1}\left(u \sqrt{\frac{k}{g}}\right) .
$$

(iv) Hence, if u is very large, explain why $V \approx \frac{2}{\pi} \sqrt{\frac{g}{k}}$.

Question 15 continues on page 16

Question 15 (continued)
(b) Suppose that $x \geq 0$ and n is a positive integer.
(i) Show that $1-x \leq \frac{1}{1+x} \leq 1$.
(ii) Hence, or otherwise, show that $1-\frac{1}{2 n} \leq n \ln \left(1+\frac{1}{n}\right) \leq 1$.
(iii) Hence, explain why $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$.
(c) For positive real numbers x and $y, \sqrt{x y} \leq \frac{x+y}{2}$. (Do NOT prove this.)
(i) Prove $\sqrt{x y} \leq \sqrt{\frac{x^{2}+y^{2}}{2}}$, for positive real numbers x and y.
(ii) Prove $\sqrt[4]{a b c d} \leq \sqrt{\frac{a^{2}+b^{2}+c^{2}+d^{2}}{4}}$, for positive real numbers a, b, c and d.

End of Question 15

Question 16 (15 marks) Use a SEPARATE writing booklet.
(a) (i) A table has 3 rows and 5 columns, creating 15 cells as shown.

Counters are to be placed randomly on the table so that there is one counter in each cell. There are 5 identical black counters and 10 identical white counters.

Show that the probability that there is exactly one black counter in each column is $\frac{81}{1001}$.
(ii) The table is extended to have n rows and q columns. There are $n q$ counters, where q are identical black counters and the remainder are identical white counters. The counters are placed randomly on the table with one counter in each cell.

Let P_{n} be the probability that each column contains exactly one black counter.

Show that $P_{n}=\frac{n^{q}}{\binom{n q}{q}}$.
(iii) Find $\lim _{n \rightarrow \infty} P_{n}$.

Question 16 (continued)
(b) Let n be a positive integer.
(i) By considering $(\cos \alpha+i \sin \alpha)^{2 n}$, show that

$$
\begin{aligned}
\cos (2 n \alpha)= & \cos ^{2 n} \alpha-\binom{2 n}{2} \cos ^{2 n-2} \alpha \sin ^{2} \alpha+\binom{2 n}{4} \cos ^{2 n-4} \alpha \sin ^{4} \alpha-\cdots \\
& +\cdots+(-1)^{n-1}\binom{2 n}{2 n-2} \cos ^{2} \alpha \sin ^{2 n-2} \alpha+(-1)^{n} \sin ^{2 n} \alpha
\end{aligned}
$$

Let $T_{2 n}(x)=\cos \left(2 n \cos ^{-1} x\right)$, for $-1 \leq x \leq 1$.
(ii) Show that

$$
T_{2 n}(x)=x^{2 n}-\binom{2 n}{2} x^{2 n-2}\left(1-x^{2}\right)+\binom{2 n}{4} x^{2 n-4}\left(1-x^{2}\right)^{2}+\cdots+(-1)^{n}\left(1-x^{2}\right)^{n}
$$

(iii) By considering the roots of $T_{2 n}(x)$, find the value of

$$
\cos \left(\frac{\pi}{4 n}\right) \cos \left(\frac{3 \pi}{4 n}\right) \cdots \cos \left(\frac{(4 n-1) \pi}{4 n}\right) .
$$

(iv) Prove that

$$
1-\binom{2 n}{2}+\binom{2 n}{4}-\binom{2 n}{6}+\cdots+(-1)^{n}\binom{2 n}{2 n}=2^{n} \cos \left(\frac{n \pi}{2}\right) .
$$

End of paper

BLANK PAGE

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

